Küppers, H., Takusagawa, F. \& Koetzle, T. F. (1985). J. Chem. Phys. 82, 5636-5647.
Petricek, V. \& Dusek, M. (1998). JANA98. Crystallographic Computing System. Institute of Physics. Academy of Sciences of Czech Republic, Praha, Czech Republic.
Sheldrick, G. M. (1990). SHELXTLIPC. Version 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1991). XSCANS User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.

Acta Cryst. (1999). C55, 2000-2002

A rhenium(V)-arylimide species incorporating pyridine-2-aldimine chelation

Sangeeta Baneriee, Sibaprasad Bhattacharyya, Indranil Chakraborty and Bimal Kumar Dirghangi

Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Calcutta 700 032, India. E-mail: icbd@mahendra.iacs.res.in
(Received 7 June 1999; accepted 9 August 1999)

Abstract

The title compound, (4-aminophenylimido)trichloro[2-(4-chlorophenyliminomethyl)pyridine]rhenium (V), [Re$\left.\left(\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}\right) \mathrm{Cl}_{3}(\mathrm{ClA})\right]$, where ClA is N - p-chloro-phenyl)pyridine-2-aldimine ($p-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{CHC}_{5} \mathrm{H}_{4} \mathrm{~N}$), was synthesized by reacting the corresponding oxo complex, $\left[\mathrm{ReOCl}_{3}(\mathrm{ClA})\right]$, or the corresponding phosphine oxide complex, $\left[\mathrm{Re}\left(\mathrm{OPPh}_{3}\right) \mathrm{Cl}_{3}(\mathrm{ClA})\right]$, with p-phenylenediamine in toluene. The structure determination revealed that the $\mathrm{ReCl}_{3} \mathrm{~N}_{3}$ coordination sphere is severely distorted from octahedral geometry and that it has a meridional ReCl_{3} fragment. The $\mathrm{Re}-\mathrm{N}-\mathrm{C}$ angle in the imide part is nearly linear and the $\mathrm{Re}-\mathrm{N}_{\text {imide }}$ bond can be considered to be triple bond in character. The Re atom is distorted towards the imide N atom by $0.29 \AA$ from the equatorial $\mathrm{Cl}_{3} \mathrm{~N}_{\text {imine }}$ plane. The $\mathrm{Re}-\mathrm{N}_{\text {pyridine }}$ bond is longer by $0.15 \AA$ than the $\mathrm{Re}-\mathrm{N}_{\text {imine }}$ bond due to the trans influence of the imide fragment.

Comment

High-valent rhenium complexes with metal-ligand multiple bonds, e.g. imido or oxo complexes, have been of increasing interest in inorganic chemistry (Wang et al., 1993; Nugent \& Mayer, 1988). In the course of our search for new and reactive oxorhenium(V) species, we isolated a pyridine-2-aldimine-chelated $\mathrm{Re}^{\vee} \mathrm{O}$ species, (2), which undergoes O-atom transfer to
PPh_{3}, affording an $\mathrm{Re}^{\mathrm{III}} \mathrm{OPPh}_{3}$ species, (3) (Dirghangi, Menon, Pramanik \& Chakravorty, 1997). Both (2) and (3) were found to react with ArNH_{2}, furnishing $\mathrm{Re}^{\vee} \mathrm{NAr}$ species which undergo inward O -atom transfer from water followed by metal oxidation to give rare $\mathrm{Re}^{\mathrm{Vl}} \mathrm{NAr}$ species incorporating 2-picolinamide chelation (Dirghangi, Menon, Banerjee \& Chakravorty, 1997; Banerjee et al., 1997). This work forms part of a program on the synthesis and characterization of new $\mathrm{Re}^{V} \mathrm{NAr}$ compounds.

The species of concern to us here is $\left[\operatorname{Re}\left(\mathrm{NC}_{6} \mathrm{H}_{4}-\right.\right.$ $\left.\left.\mathrm{NH}_{2}\right) \mathrm{Cl}_{3}(\mathrm{ClA})\right]$, (1), where ClA is N-(p-chlorophenyl)-pyridine-2-aldimine ($p-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{CHC}_{5} \mathrm{H}_{4} \mathrm{~N}$). This was

(1)
synthesized from the oxo complex $\left[\mathrm{ReOCl}_{3}(\mathrm{ClA})\right]$, (2), or from the phosphine oxide complex $\left[\operatorname{Re}\left(\mathrm{OPPh}_{3}\right) \mathrm{Cl}_{3}-\right.$ (CIA)], (3), with p-phenylenediamine in toluene. A view of the molecular structure of (1) is shown in Fig. 1. The $\mathrm{ReCl}_{3} \mathrm{~N}_{3}$ coordination sphere is severely distorted from octahedral geometry. The ReCl_{3} fragment is meridionally disposed. The chelate ring [bite angle $\left.73.8(2)^{\circ}\right]$ along with the pyridine ring constitute a good plane (mean deviation $0.05 \AA$) with which the chlorophenyl group makes a dihedral angle of $61.6(3)^{\circ}$. The aryl group of the imide fragment makes a dihedral angle of $39.5(4)^{\circ}$ with the chlorophenyl group.
An interesting feature of the structure is that the pyridine and imide N atoms (N 1 and N 3 , respectively) bend towards each other in the direction of the $\mathrm{Re} / \mathrm{C} 12 / \mathrm{N} 2$ plane. Additionally, the metal atom is displaced from the $\mathrm{N} 2 / \mathrm{Cl} 1 / \mathrm{Cl} 2 / \mathrm{Cl} 3$ mean plane by $0.29 \AA$ towards N3. This distortion and bending is necessarily reflected in deviations of the trans angles from 180° [range $162.8(1)-165.2(2)^{\circ}$] and in deviations of the cis angles with respect to N 1 and N 3 from 90° to the lower and higher side, respectively. Other cis angles are very close to 90°. This type of metal deviation is common to multiple-bonded metal-ligand complexes (Dirghangi, Menon, Banerjee \& Chakravorty, 1997; Shivakumar et al., 1998; Bélanger \& Beauchamp, 1999; Banerjee et al., 1997; Lahiri et al., 1987; Bakir \& Sullivan, 1995).

Among hexacoordinated $\operatorname{Re}^{\mathrm{v}} \mathrm{N} X$ (X is alkyl or aryl) structures (Bakir et al., 1992; Masood et al., 1994; Fung et al., 1995; Wang et al., 1993; Yan et al., 1995; Rossi et al., 1993; Dirghangi, Menon, Banerjee \& Chakravorty, 1997; Banerjee et al., 1997; Lahiri et al., 1987), the

Fig. 1. A molecular view of (1) showing the atom-numbering scheme. Non-H atoms are represented by 30% displacement ellipsoids. H atoms have been omited for clarity.
$\mathrm{Re}-\mathrm{N}$ length is known to span the range $1.67-1.74 \AA$, and the $\mathrm{Re}-\mathrm{N} X$ moiety is more or less linear (Re-$\mathrm{N}-\mathrm{C}$ angles are in the range $167-180^{\circ}$), in most cases. This also applies to the present complexes. These values may be compared with those for $\left[\mathrm{Re}\left(\mathrm{NPh}^{2} \mathrm{Cl}_{3}\left(\mathrm{PPh}_{3}\right)_{3}\right]\right.$ [1.726 (6) \AA and $172.6(6)^{\circ}$; Forsellini et al., 1984]. Bending of the $\mathrm{Re}-\mathrm{N}-\mathrm{C}$ angle below 160° (semibent) is rare (Lahiri et al., 1987; Goeden \& Haymore, 1983). The idealized $\mathrm{Re}-\mathrm{N}, \mathrm{Re}=\mathrm{N}$ and $\mathrm{Re} \equiv \mathrm{N}$ bond lengths in $\mathrm{Re}^{\vee} \mathrm{N} X$ are 2.14, 1.84 and $1.69 \AA$, respectively (Goeden \& Haymore, 1983; Nugent \& Haymore, 1980). The distance in the present complex is consistent with a triple bond in the Re-imide fragment.

The $\mathrm{Re}-\mathrm{N} 1$ bond is longer than $\mathrm{Re}-\mathrm{N} 2$ by $\sim 0.15 \AA$ due to the strong trans influence of the imide N atom. The pyridine N atom is trans to the imide N atom and this is consistent with the qualitative bonding picture having a synergistic aldimine $\leftarrow \operatorname{Re} \leftarrow \mathrm{N}_{\text {imide }} \pi$ interaction (Dirghangi, Menon, Banerjee \& Chakravorty, 1997; Lahiri et al., 1987). This type of bonding also explains the diamagnetic nature of the complex ($5 d_{x_{2}}$). Upon interchanging the positions of the pyridine and aldimine N atoms (i.e. placing the latter trans to the imide N atom), the aldimine π^{*} orbital fails to interact with the metal $d_{x y}$ orbitals (participating orbitals for aldimine \leftarrow Re back-bonding) and the advantage of such bonding is lost. This is also true for the hypothetical facial geometry. Thus, the pyridine N atom is trans to the imide N atom as in the observed structure.

Experimental

$\mathrm{ReOCl}_{3}(\mathrm{ClA})$, (2), and $\mathrm{Re}\left(\mathrm{OPPh}_{3}\right) \mathrm{Cl}_{3}(\mathrm{ClA})$, (3), were prepared according to literature methods (Dirghangi, Menon, Pramanik \& Chakravorty, 1997) from $\mathrm{ReOCl}_{3}\left(\mathrm{PPh}_{3}\right)_{2}$ (Chatt \& Rowe, 1962) and their structures confirmed by IR and UVvis spectral analysis, as well as by CHN microanalysis. To a warm solution of (2) or (3) (0.1 mmol) in toluene (10 ml), an excess of p-phenylenediamine (0.5 mmol) was added. The mixture was allowed to reflux for 1 h . The resulting violet solution on chromatographic work-up [silica gel, $20 \times 1 \mathrm{~cm}$, 60-120 mesh, BDH; benzene-acetonitrile (5:1) mixture as eluant] gives the desired complex (1) in 80% yield by slow evaporation of the pink-violet eluate. Analysis calculated for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{Re}$: C 35.12, H 2.44 , $\mathrm{N} 9.11 \%$; found: C 35.28, H 2.50 , N 9.00%. UV-vis data $\left[\lambda_{\max }, \mathrm{nm}\left(\varepsilon, M^{-1} \mathrm{~cm}^{-1}\right)\right.$]: 740 (1460), 540 (7180), 325 (13285); IR (cm^{-1}): 320 and 335 ($\mathrm{Re}-\mathrm{Cl}$), $1585(\mathrm{C}=\mathrm{N})$. Single crystals of (1) suitable for X-ray studies were grown by slow diffusion of hexane into a dichloromethane solution of the complex.

Crystal data

$\left[\operatorname{Re}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2}\right) \mathrm{Cl}_{3}\left(\mathrm{C}_{12} \mathrm{H}_{9}-\right.\right.$ ClN_{2})]
$M_{r}=615.34$
Triclinic
$P \overline{1}$
$a=8.533(8) \AA$ 。
$b=10.643(8) \AA$
$c=12.287(12) \AA$
$\alpha=110.23(7)^{\circ}$
$\beta=92.65$ (7) ${ }^{\circ}$
$\gamma=103.34$ (7) ${ }^{\circ}$
$V=1009.0(16) \AA^{3}$
$Z=2$
$D_{x}=2.025 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens $R 3 \mathrm{~m} / V$ diffractometer
ω scans
Absorption correction:
ψ scan (North et al., 1968)
$T_{\text {min }}=0.096, T_{\text {max }}=0.194$
3924 measured reflections
3586 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.061$
$S=1.086$
3582 reflections
244 parameters
H atoms constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0416 P)^{2}\right.$
$+0.4494 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 30 reflections
$\theta=7-14^{\circ}$
$\mu=6.562 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Parallelepiped
$0.40 \times 0.30 \times 0.25 \mathrm{~mm}$
Dark violet

3307 reflections with
$I>2 \sigma(I)$
$R_{\mathrm{int}}=0.020$
$\theta_{\text {max }}=25.05^{\circ}$
$h=0 \rightarrow 10$
$k=-12 \rightarrow 12$
$l=-14 \rightarrow 14$
2 standard reflections every 198 reflections intensity decay: none

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.04 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-1.50 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: none Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Re}-\mathrm{N} 3$	$1.723(4)$	$\mathrm{N} 1-\mathrm{C} 5$	$1.342(6)$
$\mathrm{Re}-\mathrm{N} 2$	$2.052(4)$	$\mathrm{N} 1-\mathrm{Cl}$	$1.357(6)$
$\mathrm{Re}-\mathrm{N} \mathrm{l}$	$2.204(4)$	$\mathrm{N} 2-\mathrm{C} 6$	$1.296(6)$
$\mathrm{Re}-\mathrm{Cl} 1$	$2.372(2)$	$\mathrm{N} 2-\mathrm{C} 7$	$1.452(6)$
$\mathrm{Re}-\mathrm{Cl} 3$	$2.382(3)$	$\mathrm{N} 3-\mathrm{Cl} 3$	$1.375(6)$
$\mathrm{Re}-\mathrm{Cl} 2$	$2.414(3)$	$\mathrm{C} 1-\mathrm{C} 6$	$1.443(7)$
$\mathrm{N} 3-\mathrm{Re}-\mathrm{N} 2$	$95.0(2)$	$\mathrm{N} 3-\mathrm{Re}-\mathrm{Cl} 2$	$90.97(15)$
$\mathrm{N} 3-\mathrm{Re}-\mathrm{N} 1$	$165.2(2)$	$\mathrm{N} 2-\mathrm{Re}-\mathrm{Cl} 2$	$94.86(13)$
$\mathrm{N} 2-\mathrm{Re}-\mathrm{N} 1$	$73.8(2)$	$\mathrm{N} 1-\mathrm{Re}-\mathrm{Cl} 2$	$80.70(13)$
$\mathrm{N} 3-\mathrm{Re}-\mathrm{Cl} 1$	$102.00(15)$	$\mathrm{Cll}-\mathrm{Re}-\mathrm{Cl} 2$	$87.90(10)$
$\mathrm{N} 2-\mathrm{Re}-\mathrm{Cl} 1$	$162.76(11)$	$\mathrm{Cl} 3-\mathrm{Re}-\mathrm{Cl} 2$	$166.80(5)$
$\mathrm{N} 1-\mathrm{Re}-\mathrm{Cll}$	$89.93(12)$	$\mathrm{Cl}-\mathrm{Nl}-\mathrm{Re}$	$115.3(3)$
$\mathrm{N} 3-\mathrm{Re}-\mathrm{Cl} 3$	$102.07(15)$	$\mathrm{C} 6-\mathrm{N} 2-\mathrm{Re}$	$120.8(3)$
$\mathrm{N} 2-\mathrm{Re}-\mathrm{Cl} 3$	$86.14(13)$	$\mathrm{C} 13-\mathrm{N} 3-\mathrm{Re}$	$171.6(3)$
$\mathrm{N} 1-\mathrm{Re}-\mathrm{Cl} 3$	$86.97(13)$	$\mathrm{N} 1-\mathrm{Cl}-\mathrm{C} 6$	$112.7(4)$
$\mathrm{Cl1}-\mathrm{Re}-\mathrm{Cl} 3$	$87.38(9)$		

The highest electron-density peak ($1.04 \mathrm{e} \AA^{-3}$) lies near the Cl 4 atom.

Data collection: SHELXTL-Plus90 (Sheldrick, 1990). Cell refinement: SHELXTL-Plus90. Data reduction: SHELXTLPlus90. Program(s) used to solve structure: SHELXTL/PC (Sheldrick, 1994). Program(s) used to refine structure: SHELXTL/PC. Molecular graphics: SHELXTL/PC. Software used to prepare material for publication: SHELXTL/PC.

We thank the Department of Science and Technology and the Council of Scientific and Industrial Research, New Delhi, for financial support. We also thank Professor Animensh Chakravorty for useful discussions. The crystal structure determination was performed with the help of the National Single Crystal Diffractometer Facility attached to the IACS, Calcutta.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DE1115). Services for accessing these data are described at the back of the journal.

References

Bakir, M., Paulson, S., Goodson, P. \& Sullivan, B. P. (1992). Inorg. Chem. 31, 1127-1129.
Bakir, M. \& Sullivan, B. P. (1995). J. Chem. Soc. Dalton Trans, pp. 1733-1738.
Banerjee, S., Dirghangi, B. K., Menon, M., Pramanik, A. \& Chakravorty, A. (1997). J. Chem. Soc. Dalton Trans. pp. 2149-2153.
Bélanger, S. \& Beauchamp, A. L. (1999). Acta Cryst. C55, 517-521.
Chatt, J. \& Rowe, G. A. (1962). J. Chem. Soc. pp. 4019-4033.
Dirghangi, B. K., Menon, M., Banerjee, S. \& Chakravorty, A. (1997). Inorg. Chem. 36, 3595-3601.
Dirghangi, B. K., Menon, M., Pramanik, A. \& Chakravorty, A. (1997). Inorg. Chem. 36, 1095-1101.
Forsellini, E., Casellato, U., Graziani, R., Carletti, M. C. \& Margon, L. (1984). Acta Cryst. C40, 1795-1797.

Fung, W. F., Cheng, W. C., Peng, S. M. \& Che, C. M. (1995). Polyhedron, 14, 1791-1794.
Goeden, G. V. \& Haymore, B. L. (1983). Inorg. Chem. 22, 157-167.
Lahiri, G. K., Goswami, S., Falvello, L. R. \& Chakravorty, A. (1987). Inorg. Chem. 26, 3365-3370.
Masood, M. A., Sullivan, B. P. \& Hodgson, D. J. (1994). Inorg. Chem. 33, 5360-5362.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Crust. A24, 351-359.
Nugent, W. A. \& Haymore, B. L. (1980). Coord. Chem. Rev. 31, 123-175.

Nugent. W. A. \& Mayer, J. M. (1988). In Metal-Ligand Multiple Bonds. New York: Wiley Interscience.
Rossi, R., Marchi, A.. Marvelli, L., Magon. L.. Peruzzini, M., Casellato, U. \& Graziani, R. (1993). J. Chem. Soc. Dalton Trans. pp. 723-729.
Sheldrick, G. M. (1990). SHELXTL-Plus90. Structure Determination Software Programs. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1994). SHELXTL/PC. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA
Shivakumar, M., Banerjee, S., Menon. M. \& Chakravorty, A. (1998). Inorg. Chim. Acta, 275-276, 546-551
Wang, B. P., Che, C. M.. Wong, K. Y. \& Peng. S. M. (1993). Inorg. Chem. 32, 5827-5832.
Yan, U. W. W.. Tam. K. K. \& Cheung. K. K. (1995). J. Chem. Soc. Dalton Trans. pp. 2279-2284.

Acta Cryst. (1999). C55, 2002-2004

Disodium bis[μ-2-hydroxy-2-methylpropanoato $(2-)]-O^{1}, O^{2}: O^{2} ; O^{2}: O^{1}, O^{2}$-bis[dioxovanadate(V)] heptahydrate

Susan A. Bourne, ${ }^{a}$ J. J. Cruywagen ${ }^{b}$ and Angela Kleinhorst ${ }^{b}$
${ }^{a}$ Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa, and ${ }^{b}$ Department of Chemistry, University of Stellenbosch, Stellenbosch 7600, South Africa. E-mail: xraysue@psipsy.uct.ac.za

(Received 6 July 1999; accepted 19 August 1999)

Abstract

The title complex, $\mathrm{Na}_{2}\left[\mathrm{~V}_{2} \mathrm{O}_{4}\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3}\right)_{2}\right] \cdot 7 \mathrm{H}_{2} \mathrm{O}$, contains the $\left\{\left[\mathrm{V}\left\{\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{COO}\right\}\left(\mathrm{O}_{2}\right)\right]_{2}\right\}^{2-}$ complex anion in which two five-coordinate inversion-related vanadium centres are doubly bridged by hydroxyl-O atoms and each vanadium centre has distorted trigonal bipyramidal geometry. In the crystals, there are also two Na^{+}cations and seven molecules of water of crystallization.

Comment

Vanadium(V) complexes are of interest because they can act as models for enzyme inhibitors (Crans et al., 1990, 1991). In the structure of ribonuclease A inhibited by vanadate and uridine, reported by Kostrewa et al. (1989), the V^{V} complex has a trigonal bipyramidal geometry. Hambley et al. (1992) prepared the diammonium complex of $\operatorname{bis}(\mu$-2-ethyl-2-hy-droxybutyrato- O, O, O^{\prime})dioxovanadium (V), which they reported was stable at room temperature. The title compound, (I), is also very stable and exists as a dimer of two five-coordinate vanadium centres doubly bridged by hydroxyl-O atoms. The V atoms are related by an in-

